РП по физике 10-11

ПРИЛОЖЕНИЕ
Утверждена

В составе ООП СОО
Приказ № 61/3 от 03.11.2020

РАБОЧАЯ ПРОГРАММА учебного предмета
«ФИЗИКА»

1. Планируемые результаты освоения учебного предмета
Личностные результаты
• в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя —
ориентация на достижение личного счастья, реализацию позитивных жизненных перспектив,
инициативность, креативность, готовность и способность к личностному самоопределению,
способность ставить цели и строить жизненные планы
• в сфере отношений обучающихся с окружающими людьми — нравственное сознание и
поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения
в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в
нем взаимопонимания, находить общие цели и сотрудничать для их достижения; принятие
гуманистических ценностей, осознанное, уважительное и доброжелательное отношения к
другому человеку, его мнению, мировоззрению; способностей к сопереживанию и формирования
позитивного отношения к людям, в том числе к лицам с ограниченными возможностями
здоровья и инвалидам;
• в сфере отношений обучающихся к окружающему миру, к живой природе, художественной
культуре — мировоззрение, соответствующее современному уровню развития науки, значимость
науки, готовность к научно-техническому творчеству, владение достоверной информацией о
передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в
научных знаниях об устройстве мира и общества; готовность и способность к образованию, в том
числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному
образованию как условию успешной профессиональной и общественной деятельности;
экологическая культура, бережное отношения к родной земле, природным богатствам России и
мира, понимание влияния социально-экономических процессов на состояние природной и
социальной среды, ответственности за состояние природных ресурсов, умений и навыков
разумного природопользования, нетерпимого отношения к действиям, приносящим вред
экологии;
• в сфере отношений обучающихся к труду, в сфере социально-экономических отношений —
осознанный выбор будущей профессии как путь и способ реализации собственных жизненных
планов; готовность обучающихся к трудовой профессиональной деятельности для подготовки к
решению личных, общественных, государственных, общенациональных проблем; потребность
трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное,
ответственное и творческое отношение к разным видам трудовой деятельности.
Метапредметные результаты обучения физике в средней школе представлены тремя
группами универсальных учебных действий.
Регулятивные универсальные учебные действия
Выпускник научится:
• самостоятельно определять цели, ставить и формулировать собственные задачи в
образовательной деятельности и жизненных ситуациях;
• оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для
достижения поставленной ранее цели;
• сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
• организовывать эффективный поиск ресурсов, необходимых для достижения поставленной
цели;
• определять несколько путей достижения поставленной цели;
• задавать параметры и критерии, по которым можно определить, что цель достигнута;
• сопоставлять полученный результат деятельности с поставленной ранее целью;
• оценивать последствия достижения поставленной цели в учебной деятельности,
собственной жизни и жизни окружающих людей.
Познавательные универсальные учебные действия
Выпускник научится:
• критически оценивать и интерпретировать информацию с разных позиций;
• распознавать и фиксировать противоречия в информационных источниках;

• использовать различные модельно-схематические средства для представления выявленных
в информационных источниках противоречий;
• осуществлять развернутый информационный поиск и ставить на его основе новые
(учебные и познавательные) задачи;
• искать и находить обобщенные способы решения задач;
• приводить критические аргументы как в отношении собственного суждения, так и в
отношении действий и суждений другого;
• выходить за рамки учебного предмета и осуществлять целенаправленный поиск
возможностей широкого переноса средств и способов действия;
• выстраивать индивидуальную образовательную траекторию, учитывая ограничения со
стороны других участников и ресурсные ограничения;
• менять и удерживать разные позиции в познавательной деятельности (быть учеником и
учителем; формулировать образовательный запрос и выполнять консультативные функции
самостоятельно; ставить проблему и работать над ее решением; управлять совместной
познавательной деятельностью и подчиняться).
Коммуникативные универсальные учебные действия
Выпускник научится:
• осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как
внутри образовательной организации, так и за ее пределами);
• при осуществлении групповой работы быть как руководителем, так и членом проектной
команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
• развернуто, логично и точно излагать свою точку зрения с использованием адекватных
(устных и письменных) языковых средств;
• распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
• координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания
реального и виртуального);
• согласовывать позиции членов команды в процессе работы над общим
продуктом/решением;
• представлять публично результаты индивидуальной и групповой деятельности как перед
знакомой, так и перед незнакомой аудиторией;

Предметные результаты:
В результате изучения учебного предмета «Физика» на уровне среднего общего
образования:
Выпускник на базовом уровне научится:
– демонстрировать на примерах роль и место физики в формировании современной научной
картины мира, в развитии современной техники и технологий, в практической деятельности
людей;
– демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
– устанавливать взаимосвязь естественно-научных явлений и применять основные физические
модели для их описания и объяснения;
– использовать информацию физического содержания при решении учебных, практических,
проектных и исследовательских задач, интегрируя информацию из различных источников и
критически ее оценивая;
– различать и уметь использовать в учебно-исследовательской деятельности методы научного
познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы,
моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на
примерах их роль и место в научном познании;
– проводить прямые и косвенные изменения физических величин, выбирая измерительные
приборы с учетом необходимой точности измерений, планировать ход измерений, получать

значение измеряемой величины и оценивать относительную погрешность по заданным
формулам;
– проводить исследования зависимостей между физическими величинами: проводить измерения
и определять на основе исследования значение параметров, характеризующих данную
зависимость между величинами, и делать вывод с учетом погрешности измерений;
– использовать для описания характера протекания физических процессов физические величины
и демонстрировать взаимосвязь между ними;
– использовать для описания характера протекания физических процессов физические законы с
учетом границ их применимости;
– решать качественные задачи (в том числе и межпредметного характера): используя модели,
физические величины и законы, выстраивать логически верную цепочку объяснения
(доказательства) предложенного в задаче процесса (явления);
– решать расчетные задачи с явно заданной физической моделью: на основе анализа условия
задачи выделять физическую модель, находить физические величины и законы, необходимые и
достаточные для ее решения, проводить расчеты и проверять полученный результат;
– учитывать границы применения изученных физических моделей при решении физических и
межпредметных задач;
– использовать информацию и применять знания о принципах работы и основных
характеристиках изученных машин, приборов и других технических устройств для решения
практических, учебно-исследовательских и проектных задач;
– использовать знания о физических объектах и процессах в повседневной жизни для
обеспечения безопасности при обращении с приборами и техническими устройствами, для
сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для
принятия решений в повседневной жизни.
Выпускник на базовом уровне получит возможность научиться:
– понимать и объяснять целостность физической теории, различать границы ее применимости
и место в ряду других физических теорий;
– владеть приемами построения теоретических доказательств, а также прогнозирования
особенностей протекания физических явлений и процессов на основе полученных теоретических
выводов и доказательств;
– характеризовать системную связь между основополагающими научными понятиями:
пространство, время, материя (вещество, поле), движение, сила, энергия;
– выдвигать гипотезы на основе знания основополагающих физических закономерностей и
законов;
– самостоятельно планировать и проводить физические эксперименты;
– характеризовать глобальные проблемы, стоящие перед человечеством: энергетические,
сырьевые, экологические, – и роль физики в решении этих проблем;
– решать практико-ориентированные качественные и расчетные физические задачи с выбором
физической модели, используя несколько физических законов или формул, связывающих
известные физические величины, в контексте межпредметных связей;
– объяснять принципы работы и характеристики изученных машин, приборов и технических
устройств;
– объяснять условия применения физических моделей при решении физических задач, находить
адекватную предложенной задаче физическую модель, разрешать проблему как на основе
имеющихся знаний, так и при помощи методов оценки.

2. Содержание учебного предмета, курса
Физика
Базовый уровень
Физика и естественно-научный метод познания природы
Физика – фундаментальная наука о природе. Методы научного исследования физических
явлений. Моделирование физических явлений и процессов. Физический закон – границы
применимости. Физические теории и принцип соответствия. Роль и место физики в
формировании современной научной картины мира, в практической деятельности людей. Физика
и культура.
Механика
Границы применимости классической механики. Важнейшие кинематические характеристики –
перемещение, скорость, ускорение. Основные модели тел и движений.
Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения. Инерциальная система
отсчета. Законы механики Ньютона.
Импульс материальной точки и системы. Изменение и сохранение импульса. Использование
законов механики для объяснения движения небесных тел и для развития космических
исследований. Механическая энергия системы тел. Закон сохранения механической энергии.
Работа силы.
Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы.
Равновесие жидкости и газа. Движение жидкостей и газов.
Механические колебания и волны. Превращения энергии при колебаниях. Энергия волны.
Молекулярная физика и термодинамика
Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные
доказательства. Абсолютная температура как мера средней кинетической энергии теплового
движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния
идеального газа. Уравнение Менделеева–Клапейрона.
Агрегатные состояния вещества. Модель строения жидкостей.
Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии.
Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия
тепловых машин.
Электродинамика
Электрическое поле. Закон Кулона. Напряженность и потенциал электростатического поля.
Проводники, полупроводники и диэлектрики. Конденсатор.
Постоянный электрический ток. Электродвижущая сила. Закон Ома для полной цепи.
Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме.
Сверхпроводимость.
Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся
заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.
Закон электромагнитной индукции. Электромагнитное поле. Переменный ток. Явление
самоиндукции. Индуктивность. Энергия электромагнитного поля.
Электромагнитные колебания. Колебательный контур.
Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое
применение.
Геометрическая оптика. Волновые свойства света.
Основы специальной теории относительности
Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Связь
массы и энергии свободной частицы. Энергия покоя.
Квантовая физика. Физика атома и атомного ядра
Гипотеза М. Планка. Фотоэлектрический эффект. Фотон. Корпускулярно-волновой дуализм.
Соотношение неопределенностей Гейзенберга.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых
постулатов Бора.
Состав и строение атомного ядра. Энергия связи атомных ядер. Виды радиоактивных
превращений атомных ядер.
Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер.
Элементарные частицы. Фундаментальные взаимодействия.
Строение Вселенной
Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд.
Звезды и источники их энергии.
Галактика. Представление о строении и эволюции Вселенной.
Примерный перечень практических и лабораторных работ (на выбор учителя)
Прямые измерения:
– измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
– сравнение масс (по взаимодействию);
– измерение сил в механике;
– измерение температуры жидкостными и цифровыми термометрами;
– оценка сил взаимодействия молекул (методом отрыва капель);
– измерение термодинамических параметров газа;
– измерение ЭДС источника тока;
– измерение силы взаимодействия катушки с током и магнита помощью электронных весов;
– определение периода обращения двойных звезд (печатные материалы).
Косвенные измерения:
– измерение ускорения;
– измерение ускорения свободного падения;
– определение энергии и импульса по тормозному пути;
– измерение удельной теплоты плавления льда;
– измерение напряженности вихревого электрического поля (при наблюдении электромагнитной
индукции);
– измерение внутреннего сопротивления источника тока;
– определение показателя преломления среды;
– измерение фокусного расстояния собирающей и рассеивающей линз;
– определение длины световой волны;
– определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).
Наблюдение явлений:
– наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;
– наблюдение вынужденных колебаний и резонанса;
– наблюдение диффузии;

– наблюдение явления электромагнитной индукции;
– наблюдение волновых свойств света: дифракция, интерференция, поляризация;
– наблюдение спектров;
– вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.
Исследования:
– исследование равноускоренного движения с использованием электронного секундомера или
компьютера с датчиками;
– исследование движения тела, брошенного горизонтально;
– исследование центрального удара;
– исследование качения цилиндра по наклонной плоскости;
– исследование движения броуновской частицы (по трекам Перрена);
– исследование изопроцессов;
– исследование изохорного процесса и оценка абсолютного нуля;
– исследование остывания воды;
– исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
– исследование зависимости силы тока через лампочку от напряжения на ней;
– исследование нагревания воды нагревателем небольшой мощности;
– исследование явления электромагнитной индукции;
– исследование зависимости угла преломления от угла падения;
– исследование зависимости расстояния от линзы до изображения от расстояния от линзы до
предмета;
– исследование спектра водорода;
– исследование движения двойных звезд (по печатным материалам).
Проверка гипотез (в том числе имеются неверные):
– при движении бруска по наклонной плоскости время перемещения на определенное расстояния
тем больше, чем больше масса бруска;
– при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;
– при затухании колебаний амплитуда обратно пропорциональна времени;
– квадрат среднего перемещения броуновской частицы прямо пропорционален времени
наблюдения (по трекам Перрена);
– скорость остывания воды линейно зависит от времени остывания;
– напряжение при последовательном включении лампочки и резистора не равно сумме
напряжений на лампочке и резисторе;
– угол преломления прямо пропорционален углу падения;
– при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:
– конструирование наклонной плоскости с заданным КПД;
– конструирование рычажных весов;
– конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;
– конструирование электродвигателя;
– конструирование трансформатора;
– конструирование модели телескопа или микроскопа.

3. Тематическое планирование с указанием количества часов,
отводимых на освоение каждой темы

№
п/п
1

2

3

Наименование разделов и тем
Введение
Механика:
Кинематика
Динамика
Законы сохранения в механике
Статика. Законы гидро- и аэростатики
Молекулярная физика и
термодинамика:
Основы молекулярно-кинетической
теории
Основы термодинамика
Изменения агрегатных состояний
вещества

4

Электродинамика:
Электростатика

5.

Повторение
всего

Всего
часов
1
34
11
11
8
4
21
10
6
5

11
11
3
70


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».